输煤系统冻粘及扬生问题的预防和处理措施分析

宝伟桐

华能伊敏煤电有限责任公司伊敏电厂 内蒙古 呼伦贝尔 021130

摘要:燃煤作为电厂的主要燃料,约占电厂生产成本的 70% 左右,因此必须做好燃煤的管理、运输工作。输煤系统作为燃煤运输的重要设备,在输煤系统运行过程中,为了保障煤炭供应的安全、顺利进行,需要加强风险防控,针对冻粘及扬尘问题的发生,采取有效的预防和处理措施。文章围绕着输煤系统冻粘及扬尘问题的预防和处理展开讨论,分析冻粘及扬尘问题的发生原因及危害性,分别针对冻粘问题、扬尘问题,采取有效的预防和处理措施,以此提升输煤系统的安全性、高效性。

关键词:输煤系统:冻粘问题:扬尘问题:预防:处理措施

燃煤的供应过程中,输煤系统发挥着重要的作用,能够对煤的装卸、储存、输送、分配等环节进行有效控制。在输煤系统的工作、运行过程中,冻粘、扬尘等问题的产生,会导致设备的运行效率下降,容易引发设备故障,无法正常进行燃煤供应。输煤系统的管理和维护,应该重点加强对冻粘及扬尘问题的预防,并采取科学、有效的治理方案,进而保障输煤系统各设备的安全、稳定运行,保障燃煤供应的工作效率,降低安全事故的发生风险。

1 冻粘及扬尘问题的发生原因及危害性

1.1 冻粘

低温环境下的煤炭输送,容易产生冻粘问题。煤冻粘在输 送带、传动装置后, 会导致设备无法正常运行。冻粘问题的发 生,与气候条件、地理环境有着密切的联系。低温是煤冻粘于 胶带表面的主要原因,同时还会受到物料因素、设备因素、操 作因素的影响。煤炭的含水量较高、湿度较大时,会在低温环 境下出现粘度增加的情况。在输送煤炭的过程中,煤炭容易粘 附在胶带上,并形成冻结。输煤系统设备的材质具有吸水性强 的特点,往往会加剧煤炭粘附程度。由于日常维护不到位,输 煤系统设备发生锈蚀,会导致热传导性能下降,出现局部温度 降低的情况,增加了冻粘问题的发生风险。受到设备结构的影 响,弯头、变径管处有涡流形成,容易出现积料的情况。低温 环境下, 煤炭在输送带上长时间滞留, 容易发生冻粘。煤炭冻 粘在胶带上,会阻碍设备运行,出现运行效率下降的情况,严 重则导致故障的发生。输煤系统冻粘问题发生后,需要通过加 热的方式解除冻粘, 使煤炭与胶带分离, 针对发生故障的设备 进行维修, 进而恢复设备的正常运行。在处理冻粘问题的过程 中,需要暂时中断煤炭输送,导致煤炭供应的延迟,往往会增 加成本, 造成资源浪费。另外, 受到冻粘问题的影响, 输煤系 统运行的安全性、稳定性下降,存在事故隐患[1]。

1.2 扬尘

在输煤系统的装卸、储存、加工、输送等环节,煤炭受到碰撞与摩擦,或是对煤炭进行加工破碎时,会导致大量粉尘的产生,引发扬尘问题。在风力作用下,往往会加剧扬尘。扬尘问题的产生,造成环境污染,导致空气质量下降,并会影响地下水水质。长时间工作于粉尘浓度较高的环境中,会对输煤系统现场工作人员的健康形成危害,增加呼吸系统疾病、心血管疾病的发生风险。另外,在粉尘浓度较高的情况下,遇明火易爆炸,对于现场工作人员的人身安全构成极大的威胁^[2]。

为了保障输煤系统的安全、稳定运行,需要针对冻粘及扬 尘问题的发生原因和影响因素,采取有效的预防措施。在冻粘 及扬尘问题发生后,能够及时进行处理,避免引发安全事故, 降低冻粘及扬尘问题的危害性。

2 输煤系统冻粘问题的预防和处理

2.1 防冻粘装置的应用

进入冬季后,需要在输煤系统中使用防冻粘装置,预防冻粘问题的发生。在输煤系统的防冻粘装置中,进行防冻液的配制,然后在胶带工作面上喷洒防冻液,形成隔离层,然后进行落煤、输送,进而防止煤炭粘附于胶带,保障输煤系统的正常、稳定运行。喷洒防冻液后,胶带工作面上粘附的煤炭数量明显减少。对于少量粘附在胶带上的煤炭,可以使用清扫器刮除,不会对输煤系统的运行产生阻碍。在配制防冻液的过程中,需要根据环境条件,明确防冻粘的实际需求,进而配制合适浓度的防冻液。当地室外气温越低,需要通过增加防控液的浓度,提高防控效果。选择防控液原料时,在保障其具有良好防冻性能的同时,能够尽量降低成本,使用环保、无污染的原料。在输煤系统的防冻粘装置中,氯化钙水溶液、乙二醇、丙二醇均是是常用的防冻液。在输煤系统中安装传感器,用于监测环境温度,及时了解温度变化情况,能够为防冻液的配制提供重要的参考,进而合理调节和控制防冻液的浓度、使用量 [3]。

2.2 保温和加温措施

在输煤系统中使用保温材料,形成隔热层,可以有效减少 热量散失,提高保温效果。同时安装加热器、热风系统,对设 备进行加热,提高周围环境的温度,可以有效预防煤炭冻粘。 应用热水循环加温系统,防止设备温度过低,防止冻粘现象的 发生。

2.3 机械清除装置

在输煤系统中安装机械清除装置,用于处理胶带工作面上 冻粘的物料。重型刮板清扫器是常用的机械清除装置,刮板由 高强度材料制成,有着良好的抗磨损、抗腐蚀性能。在重型刮 板清扫器的驱动系统中,通过对电机功率、转速的调节,控制 刮板的速度、力量,可以满足不同冻粘程度的清理需求。在清 理过厚的冻粘物料时,应用重型刮板清扫器进行强力清除,能 够获得良好的清理效果,保持胶带工作面的清洁。螺旋式清扫 器的应用,可以将输送带的残留物料进行清除,防止物料的大 量积滞,避免形成冻粘。使用螺旋式清扫器清理冻粘物料时, 通过压辊碾压的方式,挤压冻粘物料,同时施加垂直方向、横 向的力,促使物料发生位移,与胶带工作面分离。应用机械清 除装置进行冻粘物料清理的过程中,关注清理效果的同时,还 应该注意扬尘问题的防控^[4]。在机械清除装置中,配有喷水系 统、吸尘系统,清除冻粘物料的同时,避免引起扬尘。

2.4 热水喷淋与烘干

在输煤系统的工作、运行过程中,出现物料冻粘问题后,可以采取热水喷淋的方式。在胶带工作面的冻粘位置,进行热水喷淋(温度:60~80℃)。在热水的作用下,使煤泥冰快

徐 合 论 **经** 2023 年第 41 期 **数字化用户**

速融化,进而消除冻粘。在热水喷淋后,需要借助机械清除装置,将物料与胶带工作面完全分离。在此基础上,将残留水分烘干。通过热水喷淋与烘干的方式处理冻粘问题,需要根据输送机的带速、周围环境的温度,合理控制输入的热量以及受热时间,提高冻粘问题的预防效果。

2.5 超声波技术

在处理输煤系统冻粘问题的过程中,可以运用超声波技术。 根据冻粘问题预防、处理的实际需要,选择合适的超声波处理。 在冻粘问题的发生初期,煤炭表面有冰晶形成,可以利用超声 波振动破碎的方式,使冻粘物破碎,防止物料与胶带工作面粘 结程度的增加。在物料输送的过程中,能够利用超声波振动, 可以有效避免物料结冰,进而预防冻粘问题的形成。在冻粘问 题发生后,将胶带浸没于盛有液体的水槽中,利用底部的超声 波蓄能器,使水槽内液体发生高频振动,促使冻粘的物料发生 松动,能够快速除冻,减少冻粘现象的不良影响。

3 输煤系统扬尘问题的预防和处理

在输煤系统中,通过修建暖封闭栈桥的方式,有效防控扬 尘问题。应用保温隔热材料,进行暖封闭栈桥的修建,形成封 闭的输煤通道,可以防止外部环境中的冷空气进入。同时安装 供暖设备(热水管道,电热器),提高通道内环境温度,使通 道内保持温暖。安装通风设备,及时将通道内的冷空气、湿气 清除。在暖封闭栈桥内进行煤炭的输送,既可以有效预防冻粘 问题的发生,又能够防止物料粉尘外溢,避免对周围环境形成 污染。修建暖封闭栈桥,减少冻粘、扬尘等问题的影响,对于 提高煤炭质量、延长设备使用寿命、降低维护成本有着积极的 影响。另外,通过构建封闭的输煤通道,可以减少风力作用的 影响,避免导致扬尘问题的发生与加剧。修建暖封闭栈桥后, 在通道内部进行降尘的安装。在胶带机尾部导料槽位置,进行 水喷淋装置的安装,具有水雾降尘的功能,可如图1所示。或 是在在胶带机头部返程皮带下方安装喷淋喷头,通过向上喷水, 产生水雾, 进而有效清除粉尘。通过对喷淋降尘设施的合理布 局,实现对输煤系统的全面覆盖,能够有效提高扬尘问题的预 防、治理效果,降低安全事故的发生风险。

图 1 输煤系统粉尘喷雾

使用煤尘抑制剂,适量喷洒于煤炭表面,可以减少粉尘的产生,进而有效预防扬尘问发生。在输煤系统的工作运行过程中,会不可避免的产生粉尘,为了防止粉尘的积累,需要及时进行清扫。在清扫粉尘的过程中,需要选择合适的清扫设备,并控制好清扫的力度,避免过度扰动粉尘。加强环境监测,具体掌握环境内的粉尘浓度、范围,进而对扬尘的发生风险进行评估,判断扬尘的严重程度。结合环境监测结果,分析粉尘产

生的原因、影响因素,寻找输煤系统各设备工作运行过程存在的问题,及时、有效的进行处理。针对扬尘问题的有效预防,能够为输煤系统创造安全的环境。为了保障现场工作人员的健康安全,需要加强安全教育,提高工作人员的安全意识,注意个人防护。要求工作人员必须佩戴安全防护用具(口罩,眼镜,手套等),定期组织工作人员进行健康检查,评估扬尘问题对于工作人员健康的影响。

4 基于冻粘及扬尘问题预防的输煤系统设计

为了进一步提高冻粘及扬尘问题的防治效果,需要根据煤炭输送工作的实际情况,设计科学、合理的管理方案。通过对翻带装置、管状胶带的设计与应用,可以有效提供冻粘及扬尘问题预防效果,进而保障输煤系统的安全、稳定运行。

4.1 翻带装置

针对长距离输送机(输送长度>1000m)冻粘及扬尘问题的预防,通过设计翻带装置,用于清理胶带工作面上冻粘的物料。翻带装置的工作运行过程中,后工作面向上,使回程段的托辊不与胶带工作面接触,可以避免撒料,减少资源的浪费。在输送机的头部,进行翻带装置的布置。在输送煤炭的过程中,可以将冻粘于胶带工作面上的物料翻落下来。然后利用自动收料装置,集中进行处理。该过程中,配合使用机械清除装置,可以有效提高冻粘物料的处理效率。

4.2 管状胶带

在输送机的回程段,进行管状胶带的设计,使回程胶带处于封闭的状态,减少物料洒落。输煤系统的工作运行过程中,关注头部、尾部的物料洒落情况,准备好清理、降尘措施,进而有效预防养成那问题。为了降低输送机的回程阻力,同时减少其功率损耗,可以采取增加托辊间距的方法。或是减少托辊数量,有效预防冻粘、扬尘问题的同时,能够满足节能、环保的需求 [5]。

5 结论

输煤系统的工作运行过程中,冻粘、扬尘问题的发生,会导致设备运行安全性、稳定性的下降,增加安全事故的发生风险,并会造成环境污染,危害现场工作人员的健康。为了减少冻粘、扬尘问题对于输煤系统安全运行的影响,需要采取有效的预防与处理办法。在冻粘问题的预防处理方面,应用防冻粘装置、保温和加温措施,配合使用机械清除装置、热水喷淋与烘干措施以及超声波技术,可以有效降低冻粘问题发生风险,降低其危害性。在扬尘问题的预防和处理方面,通过修建暖封闭栈桥,配合使用降尘措施,能够有效降低扬尘问题发生风险,避免引发安全事故。基于冻粘及扬尘问题预防的输煤系统设计,可以进一步提高冻粘、扬尘问题的预防效果。

参考文献

- [1] 王晶,杨俊辉,王涛,等.输煤系统粉尘综合治理技术研究与应用[J].煤炭加工与综合利用,2023,(08):99-104.
- [2] 吴晓平.输煤系统粉尘治理中的优化改造及应用——以张掖发电公司湿法静电除尘器为例[J].冶金管理,2022,(07):57-59.
- [3] 白德意,李子龙,李华才,等.输煤系统干雾抑尘 改造成果的应用[J].电子测试,2021,(16):111-112+104.
- [4] 刘洋.长距离输煤皮带廊胶带防冻粘系统的应用 [J]. 机电工程技术,2018,47(03):61-63.
- [5] 张英.严寒地区输送带输煤系统防冻黏喷雾技术研究 [J]. 煤炭科学技术, 2018, 46(01): 238-244.